

LA COMBUSTION THERMIQUE

Calcul des rejets dans l'atmosphère

EXEMPLE DE COMBUSTION DU CHARBON:

P.C.S.: 7150 Kcal/Kg = 7.15 th/Kg

P.C.I.: 6900 Kcal/Kg (sur sec) = 6.9 th/Kg

Cendre (imbrulés) en % : 10

1) Caractéristiques chimiques et thermiques du charbon :

- l'analyse élémentaire sur produit sec donne :

Carbone C en %: 77

Hydrogène H en %: 4

Oxygène O en %:7

Soufre S en %: 1 Azote N en %: 0.75

Chlore Cl en % : 0.25

Fluor F en mg / Kg 230 mg / Kg

- caractéristique des cendres de charbon : l'analyse laboratoire donne :

TYPE DE CENDRES	Soufre S %	Chlore CL %	Perte au feu %	Fluor F en mg/Kg
Cendres Volantes (coté fumées sortie chaudière) = 85 %	0,04	0,03	0,8	170
Cendres de Foyer (recueillis dans le cendrier) = 15 %	0,01	0,04	0	35

- Soufre, Chlore et Fluor combustible dans 1 Kg de charbon consommé :

poids de cendres volantes rejettés : $(100 \times 0.85)/(1-0.008) = 85.7 \text{ g pour 1 Kg de}$ charbon

poids de cendres de foyer recupérées au cendrier : 100 x 0,15 = 15 g pour 1 Kg de charbon

teneur en <u>S combustible</u> présent dans 1 Kg de charbon :

10 - $\{(85.7 \times 0.04)/100 + (15 \times 0.01)/100\} = 9.96 \text{ g / Kg de charbon}$ d'où S combustible en % du S total : (9,96 x 100)/10 = 99,6 %

teneur en CI combustibleprésent dans 1 Kg de charbon :

 $2.5 - \{(85.7 \times 0.03)/100 + (15 \times 0.04)/100\} = 2.47 \text{ g / Kg de charbon}$ d'où <u>CI combustible en % du CI total</u>: (2,47 x 100)/2,5 = 98,7 %

teneur en F combustibleprésent dans 1 Kg de charbon :

230 - $\{(85.7 \times 170)/1000 + (15 \times 35)/1000\} = 215 \text{ mg} / \text{Kg de charbon}$ d'où F combustible en % du F total : (2,14 x 100)/230 = 93,4 %

2) Combustion du charbon:

2-1) - Calcul de la composition et du volume des fumée résultant de la combustion de 1 Kg de charbon :

_	Volume en litres	O2 nécessaire à la combustion
C + O2> CO2	(770 x 22,26)/12 = 1428 I de CO2	(770 x 22,39)/12 = 1437 l d'O2
2H + 1/2O2 —> H2O	(40 x 22,4)/2 = 448 l d'H2O	(40 x 11,2)/2 = 224 l d'O2
S combustible + O2 > SO2	(10 x 21,89)/32 = 6,8 l de SO2	(10 x 22,39)/32 = 7 l d'O2
CL combustible + H —> CIH	(2,5 x 22,24)/35,5 = 1,6 l de HCl	_
N> N2	(7,5 x 22,4)/28 = 6 l de N2	_
D'où volume des fumes incondensables en litres	1442,4 litres	_

- O2 présent dans le charbon : (70 x 22,39)/32 = 49 litres
- O2 nécessaire à la combustion : 1437 + 224 + 7 49 = 1619 litres
- Volume d'air correspondant à cette consommation d'oxygène :

1619/0,2099 = 7713 litres

- Azote N2 dans l'air de combustion : 7713 1619 = 6094 litres
- Azote N2 Total dans les fumées : 6094 + 6 = 6100 litres

Volume et composition des fumée neutres :

CO2	1428 litres	18,9 %
N2	6100 litres	80,99 %
SO2	6,8 litres	0,0923 %
CIH	1,6 litres	0,0212 %
TOTAL	7536,4 litres	100 %

GM-ENERGIE

2-2) - SO2, CL et F rejetés en masse par thermie th produite ou KWh thermique produit : (sachant que 1 KWh = 0,86 thermie)

 $SO2 = (9,96 \times 64)/(6,900$ pci x 32) = 2,89 g / th = 2,48 g/KWh pour 1 Kg de charbon brûlé (9,96 provenant du S combustible)

CI = (2,47/6,900) = 0,36 g / th = 0,31 g/KWh pour 1 Kg de charbon brûléF = 215/6,900 = 31,16 mg / th = 26,8 mg/KWh pour 1 Kg de charbon brûlé

2-3) - Volume des fumées réelles résultant de la combustion de 1 Kg de charbon :

On réalité on mesure un CO2 dans les fumées de l'ordre de 13 % à comparer au 18,9 % calculé précédemment ; ceci veut dire que l'on fonctionne avec un excès d'air ; d'où le volume réel de fumées :

 $(7536,4 \times 18,9)/13 = 10956$ litres

- l'air excédentaire dans les fumées étant de : 10956 7536,4 = 3419,6 litres exprimé en % : (3419,6 x 100)/(7526,4 + 3419,6) = 31 %
- volume d'air excédentaire y ajouté à 100 litres de fumées neutres : (18,9 x 100)/(100 + y) = 13
 d'où : y = 45,4 litres (équivaut à un excès d'air de 31 %)
- 2-4) SO2, CL et F rejetés à la sortie de la cheminée en volume Nm3 :

SO2 = 923/1,454 = 635 ml/Nm3 de fumées CIH = 212/1,454 = 146 ml/Nm3 de fumées FH = (215 x 22,4)/(19)x(7,536x1,454) = 23 ml/Nm3 de fumées

- 2-5) Oxyde d'azote N2 par thermie th produite ou KWh thermique produit : (sachant que 1 KWh = 0,86 thermie)
 - les mesures donnent en moyenne 280 ml/ Nm3 de NO2 d'où 0,280 x 10,956 = 3,68 litres de NO2 par Kg de charbon
 - sachant que le poids spécifique de NO2 est de 2,05 g / l , on obtient : 3,68 x 2,05 = 7,54 g par Kg de charbon ce qui nous donne 7,54/6,900 = 1,1 g / th = 0,94 g/KWh

2-6) - RECAPITULATIF - la combustion de 1 kg de charbon (à 10 % de cendres où d'imbrûlés) donne :

-Sachant que l'analyse élémentaire d'un morceau de charbon lorrain sur produit sec est :

Carbone C en %: 77 Azote N en %: 0,75 Hydrogène H en %: 4 Chlore Cl en %: 0,25

Oxygène O en %: 7 Fluor F en mg / Kg 230 mg / Kg

Soufre S en %: 1

P.C.S.: 7150 Kcal/Kg = 7,15 th/Kg

P.C.I.: 6900 Kcal/Kg (sur sec) = 6.9 th/Kg

Combustion 1 Kg Charbon (à 10 % de cendres)	Volume réel des fumées	Fumées neutres	Besoin O2	Rejet par thermie	Rejet par KWh	Rejets Cheminée (volume)	Rejets Cheminée (poids)
Excès d'air	31 %	_	_	_	_	_	_
CO2	_	1428 litres	1437 litres	_	_	_	2800 g
H2O	_	(448 litres)	224 litres	_		_	_
SO2	_	6,8 litres	7 litres	2,89 g/th	2,48 g/KWh	635 ml/Nm3	19,92 g
CI	_	_	_	0,36 g/th	0,31 g/KWh	_	2,47 g
HCI	_	1,6 litres	_	_	_	146 ml/Nm3	2,60 g
N2 air de combustion	_	6094 litres	-	_	_	_	_
N2 (du charbon)	_	6 litres	_	_	_	_	-
F	-	_	_	31,2 mg/th	26,8 mg/KWh	_	-
FH	_	_	_	_	_	23 ml/Nm3	215 mg
Oxydes d'azote Nox en NO2	_	_	_	1,1 g/th	0,94 g/KWh	280 ml/Nm3	7,59 g
TOTAL	10956 litres	7536,4 litres	_	_	_	_	-